Artículos de revistas
CONTINUITY OF GLOBAL ATTRACTORS FOR A CLASS OF NON LOCAL EVOLUTION EQUATIONS
Fecha
2010Registro en:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, v.26, n.3, p.1073-1100, 2010
1078-0947
10.3934/dcds.2010.26.1073
Autor
PEREIRA, Antonio Luiz
SILVA, Severino Horacio da
Institución
Resumen
In this work we prove that the global attractors for the flow of the equation partial derivative m(r, t)/partial derivative t = -m(r, t) + g(beta J * m(r, t) + beta h), h, beta >= 0, are continuous with respect to the parameters h and beta if one assumes a property implying normal hyperbolicity for its (families of) equilibria.