dc.creatorALIAS, L. J.
dc.creatorBESSA, G. P.
dc.creatorMONTENEGRO, J. F.
dc.creatorPICCIONE, P.
dc.date.accessioned2012-10-20T04:51:04Z
dc.date.accessioned2018-07-04T15:47:14Z
dc.date.available2012-10-20T04:51:04Z
dc.date.available2018-07-04T15:47:14Z
dc.date.created2012-10-20T04:51:04Z
dc.date.issued2011
dc.identifierRESULTS IN MATHEMATICS, v.60, n.1/Abr, p.265-286, 2011
dc.identifier1422-6383
dc.identifierhttp://producao.usp.br/handle/BDPI/30728
dc.identifier10.1007/s00025-011-0154-5
dc.identifierhttp://dx.doi.org/10.1007/s00025-011-0154-5
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627367
dc.description.abstractWe give estimates of the intrinsic and the extrinsic curvature of manifolds that are isometrically immersed as cylindrically bounded submanifolds of warped products. We also address extensions of the results in the case of submanifolds of the total space of a Riemannian submersion.
dc.languageeng
dc.publisherBIRKHAUSER VERLAG AG
dc.relationResults in Mathematics
dc.rightsCopyright BIRKHAUSER VERLAG AG
dc.rightsrestrictedAccess
dc.subjectWarped product manifolds
dc.subjectOmori-Yau Maximum Principle
dc.subjectWeak Omori-Yau Maximum Principle
dc.subjectcylindrically bounded submanifolds
dc.subjectsectional curvature
dc.subjectscalar curvature
dc.subjectmean curvature
dc.titleCurvature Estimates for Submanifolds in Warped Products
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución