dc.creatorGONCALVES, D. L.
dc.creatorKELLY, M. R.
dc.date.accessioned2012-10-20T04:51:01Z
dc.date.accessioned2018-07-04T15:47:12Z
dc.date.available2012-10-20T04:51:01Z
dc.date.available2018-07-04T15:47:12Z
dc.date.created2012-10-20T04:51:01Z
dc.date.issued2010
dc.identifierTOPOLOGY AND ITS APPLICATIONS, v.157, n.10/Nov, Special Issue, p.1770-1783, 2010
dc.identifier0166-8641
dc.identifierhttp://producao.usp.br/handle/BDPI/30718
dc.identifier10.1016/j.topol.2010.02.027
dc.identifierhttp://dx.doi.org/10.1016/j.topol.2010.02.027
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627357
dc.description.abstractWe study the 1-parameter Wecken problem versus the restricted Wecken problem, for coincidence free pairs of maps between surfaces. For this we use properties of the function space between two surfaces and of the pure braid group on two strings of a surface. When the target surface is either the 2-sphere or the torus it is known that the two problems are the same. We classify most pairs of homotopy classes of maps according to the answer of the two problems are either the same or different when the target is either projective space or the Klein bottle. Some partial results are given for surfaces of negative Euler characteristic. (C) 2010 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationTopology and Its Applications
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectSurfaces
dc.subjectCoincidence
dc.subjectMinimal maps for coincidence
dc.subjectWecken homotopies
dc.subjectFunction space
dc.subjectSurface braid groups
dc.subjectEquation on groups
dc.titleCoincidence Wecken homotopies versus Wecken homotopies relative to a fixed homotopy in one of the maps
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución