dc.creatorGRISHKOV, Alexander N.
dc.creatorGIULIANI, Maria De Lourdes Merlini
dc.creatorZAVARNITSINE, Andrei V.
dc.date.accessioned2012-10-20T04:50:59Z
dc.date.accessioned2018-07-04T15:47:10Z
dc.date.available2012-10-20T04:50:59Z
dc.date.available2018-07-04T15:47:10Z
dc.date.created2012-10-20T04:50:59Z
dc.date.issued2010
dc.identifierJOURNAL OF ALGEBRA AND ITS APPLICATIONS, v.9, n.5, p.791-808, 2010
dc.identifier0219-4988
dc.identifierhttp://producao.usp.br/handle/BDPI/30711
dc.identifier10.1142/S0219498810004233
dc.identifierhttp://dx.doi.org/10.1142/S0219498810004233
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627350
dc.description.abstractWe classify all unital subalgebras of the Cayley algebra O(q) over the finite field F(q), q = p(n). We obtain the number of subalgebras of each type and prove that all isomorphic subalgebras are conjugate with respect to the automorphism group of O(q). We also determine the structure of the Moufang loops associated with each subalgebra of O(q).
dc.languageeng
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTD
dc.relationJournal of Algebra and Its Applications
dc.rightsCopyright WORLD SCIENTIFIC PUBL CO PTE LTD
dc.rightsrestrictedAccess
dc.subjectCayley algebra
dc.subjectMoufang loop
dc.subjectsubalgebra
dc.subjectautomorphism group
dc.titleCLASSIFICATION OF SUBALGEBRAS OF THE CAYLEY ALGEBRA OVER A FINITE FIELD
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución