dc.creatorSHESTAKOV, Ivan
dc.creatorZAICEV, Mikhail
dc.date.accessioned2012-10-20T04:50:56Z
dc.date.accessioned2018-07-04T15:47:07Z
dc.date.available2012-10-20T04:50:56Z
dc.date.available2018-07-04T15:47:07Z
dc.date.created2012-10-20T04:50:56Z
dc.date.issued2011
dc.identifierCOMMUNICATIONS IN ALGEBRA, v.39, n.3, p.929-932, 2011
dc.identifier0092-7872
dc.identifierhttp://producao.usp.br/handle/BDPI/30699
dc.identifier10.1080/00927870903527600
dc.identifierhttp://dx.doi.org/10.1080/00927870903527600
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627338
dc.description.abstractLet F be an algebraically closed field and let A and B be arbitrary finite dimensional simple algebras over F. We prove that A and B are isomorphic if and only if they satisfy the same identities.
dc.languageeng
dc.publisherTAYLOR & FRANCIS INC
dc.relationCommunications in Algebra
dc.rightsCopyright TAYLOR & FRANCIS INC
dc.rightsrestrictedAccess
dc.subjectFinite dimensional simple algebra
dc.subjectPolynomial identity
dc.titlePOLYNOMIAL IDENTITIES OF FINITE DIMENSIONAL SIMPLE ALGEBRAS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución