dc.creatorKASHUBA, Iryna
dc.creatorOVSIENKO, Serge
dc.creatorSHESTAKOV, Ivan
dc.date.accessioned2012-10-20T04:50:54Z
dc.date.accessioned2018-07-04T15:47:05Z
dc.date.available2012-10-20T04:50:54Z
dc.date.available2018-07-04T15:47:05Z
dc.date.created2012-10-20T04:50:54Z
dc.date.issued2011
dc.identifierADVANCES IN MATHEMATICS, v.226, n.1, p.385-418, 2011
dc.identifier0001-8708
dc.identifierhttp://producao.usp.br/handle/BDPI/30696
dc.identifier10.1016/j.aim.2010.07.003
dc.identifierhttp://dx.doi.org/10.1016/j.aim.2010.07.003
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627335
dc.description.abstractThe problem of classification of Jordan bit-nodules over (non-semisimple) finite dimensional Jordan algebras with respect to their representation type is considered. The notions of diagram of a Jordan algebra and of Jordan tensor algebra of a bimodule are introduced and a mapping Qui is constructed which associates to the diagram of a Jordan algebra J the quiver of its universal associative enveloping algebra S(J). The main results are concerned with Jordan algebras of semi-matrix type, that is, algebras whose semi-simple component is a direct sum of Jordan matrix algebras. In this case, criterion of finiteness and tameness for one-sided representations are obtained, in terms of diagram and mapping Qui, for Jordan tensor algebras and for algebras with radical square equals to 0. (c) 2010 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relationAdvances in Mathematics
dc.rightsCopyright ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsrestrictedAccess
dc.subjectJordan algebra
dc.subjectJordan bimodule
dc.subjectRepresentation type
dc.subjectDiagram of an algebra
dc.subjectJordan tensor algebra
dc.subjectQuiver of an algebra
dc.titleRepresentation type of Jordan algebras
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución