dc.creatorGONCALVES, Jairo Z.
dc.creatorRIO, Angel Del
dc.date.accessioned2012-10-20T04:50:49Z
dc.date.accessioned2018-07-04T15:47:01Z
dc.date.available2012-10-20T04:50:49Z
dc.date.available2018-07-04T15:47:01Z
dc.date.created2012-10-20T04:50:49Z
dc.date.issued2011
dc.identifierINTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, v.21, n.4, p.531-545, 2011
dc.identifier0218-1967
dc.identifierhttp://producao.usp.br/handle/BDPI/30678
dc.identifier10.1142/S0218196711006327
dc.identifierhttp://dx.doi.org/10.1142/S0218196711006327
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627317
dc.description.abstractMarciniak and Sehgal showed that if u is a non-trivial bicyclic unit of an integral group ring then there is a bicyclic unit v such that u and v generate a non-abelian free group. A similar result does not hold for Bass cyclic units of infinite order based on non-central elements as some of them have finite order modulo the center. We prove a theorem that suggests that this is the only limitation to obtain a non-abelian free group from a given Bass cyclic unit. More precisely, we prove that if u is a Bass cyclic unit of an integral group ring ZG of a solvable and finite group G, such that u has infinite order modulo the center of U(ZG) and it is based on an element of prime order, then there is a non-abelian free group generated by a power of u and a power of a unit in ZG which is either a Bass cyclic unit or a bicyclic unit.
dc.languageeng
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTD
dc.relationInternational Journal of Algebra and Computation
dc.rightsCopyright WORLD SCIENTIFIC PUBL CO PTE LTD
dc.rightsrestrictedAccess
dc.subjectGroup rings
dc.subjectfree groups
dc.subjectunits
dc.subjectBass cyclic units
dc.subjectbicyclic units
dc.titleBASS CYCLIC UNITS AS FACTORS IN A FREE GROUP IN INTEGRAL GROUP RING UNITS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución