dc.creatorGONCALVES, Daciberg L.
dc.creatorGUASCHI, John
dc.date.accessioned2012-10-20T04:50:43Z
dc.date.accessioned2018-07-04T15:46:56Z
dc.date.available2012-10-20T04:50:43Z
dc.date.available2018-07-04T15:46:56Z
dc.date.created2012-10-20T04:50:43Z
dc.date.issued2008
dc.identifierALGEBRAIC AND GEOMETRIC TOPOLOGY, v.8, n.2, p.757-785, 2008
dc.identifier1472-2739
dc.identifierhttp://producao.usp.br/handle/BDPI/30658
dc.identifier10.2140/agt.2008.8.757
dc.identifierhttp://dx.doi.org/10.2140/agt.2008.8.757
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627297
dc.description.abstractLet n >= 3. We classify the finite groups which are realised as subgroups of the sphere braid group B(n)(S(2)). Such groups must be of cohomological period 2 or 4. Depending on the value of n, we show that the following are the maximal finite subgroups of B(n)(S(2)): Z(2(n-1)); the dicyclic groups of order 4n and 4(n - 2); the binary tetrahedral group T*; the binary octahedral group O*; and the binary icosahedral group I(*). We give geometric as well as some explicit algebraic constructions of these groups in B(n)(S(2)) and determine the number of conjugacy classes of such finite subgroups. We also reprove Murasugi`s classification of the torsion elements of B(n)(S(2)) and explain how the finite subgroups of B(n)(S(2)) are related to this classification, as well as to the lower central and derived series of B(n)(S(2)).
dc.languageeng
dc.publisherGEOMETRY & TOPOLOGY PUBLICATIONS
dc.relationAlgebraic and Geometric Topology
dc.rightsCopyright GEOMETRY & TOPOLOGY PUBLICATIONS
dc.rightsclosedAccess
dc.titleThe classification and the conjugacy classes of the finite subgroups of the sphere braid groups
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución