dc.creatorALAS, Ofelia T.
dc.creatorJUNQUEIRA, Lucia R.
dc.creatorWILSON, Richard G.
dc.date.accessioned2012-10-20T04:50:37Z
dc.date.accessioned2018-07-04T15:46:51Z
dc.date.available2012-10-20T04:50:37Z
dc.date.available2018-07-04T15:46:51Z
dc.date.created2012-10-20T04:50:37Z
dc.date.issued2008
dc.identifierTOPOLOGY AND ITS APPLICATIONS, v.155, n.13, p.1420-1425, 2008
dc.identifier0166-8641
dc.identifierhttp://producao.usp.br/handle/BDPI/30639
dc.identifier10.1016/j.topol.2008.04.003
dc.identifierhttp://dx.doi.org/10.1016/j.topol.2008.04.003
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627278
dc.description.abstractA neighbourhood assignment in a space X is a family O = {O-x: x is an element of X} of open subsets of X such that X is an element of O-x for any x is an element of X. A set Y subset of X is a kernel of O if O(Y) = U{O-x: x is an element of Y} = X. We obtain some new results concerning dually discrete spaces, being those spaces for which every neighbourhood assignment has a discrete kernel. This is a strictly larger class than the class of D-spaces of [E.K. van Douwen, W.F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (2) (1979) 371-377]. (c) 2008 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationTopology and Its Applications
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectneighbourhood assignment
dc.subjectdiscrete kernel
dc.subjectdually discrete space
dc.subjectD-space
dc.subjectdiscretely complete space
dc.subjectGO-space
dc.subjectlocally countable extent
dc.subjectproduct of ordinals
dc.titleDually discrete spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución