dc.creatorDOKUCHAEV, M.
dc.creatorEXEL, R.
dc.creatorSIMON, J. J.
dc.date.accessioned2012-10-20T04:50:28Z
dc.date.accessioned2018-07-04T15:46:48Z
dc.date.available2012-10-20T04:50:28Z
dc.date.available2018-07-04T15:46:48Z
dc.date.created2012-10-20T04:50:28Z
dc.date.issued2008
dc.identifierJOURNAL OF ALGEBRA, v.320, n.8, p.3278-3310, 2008
dc.identifier0021-8693
dc.identifierhttp://producao.usp.br/handle/BDPI/30623
dc.identifier10.1016/j.jalgebra.2008.06.023
dc.identifierhttp://dx.doi.org/10.1016/j.jalgebra.2008.06.023
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627262
dc.description.abstractFor a twisted partial action e of a group G on an (associative non-necessarily unital) algebra A over a commutative unital ring k, the crossed product A x(Theta) G is proved to be associative. Given a G-graded k-algebra B = circle plus(g is an element of G) B-g with the mild restriction of homogeneous non-degeneracy, a criteria is established for B to be isomorphic to the crossed product B-1 x(Theta) G for some twisted partial action of G on B-1. The equality BgBg-1 B-g = B-g (for all g is an element of G) is one of the ingredients of the criteria, and if it holds and, moreover, B has enough local units, then it is shown that B is stably isomorphic to a crossed product by a twisted partial action of G. (c) 2008 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relationJournal of Algebra
dc.rightsCopyright ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsrestrictedAccess
dc.subjectpartial action
dc.subjectcrossed product
dc.subjectgraded ring
dc.titleCrossed products by twisted partial actions and graded algebras
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución