dc.creatorALAS, Ofelia T.
dc.creatorTKACHENKO, Mikhail G.
dc.creatorWILSON, Richard G.
dc.date.accessioned2012-10-20T04:50:23Z
dc.date.accessioned2018-07-04T15:46:45Z
dc.date.available2012-10-20T04:50:23Z
dc.date.available2018-07-04T15:46:45Z
dc.date.created2012-10-20T04:50:23Z
dc.date.issued2009
dc.identifierHOUSTON JOURNAL OF MATHEMATICS, v.35, n.1, p.149-158, 2009
dc.identifier0362-1588
dc.identifierhttp://producao.usp.br/handle/BDPI/30611
dc.identifierhttp://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000265193200013&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627250
dc.description.abstractWe study which topology have an immediate predecessor in the poset of Sigma(2) of Hausdorff topologies on set X. We show that certain classes of H-closed topologies, do have predecessors. and we give examples of second countable H-closed topologies which are not upper Sigma(2.)
dc.languageeng
dc.publisherUNIV HOUSTON
dc.relationHouston Journal of Mathematics
dc.rightsCopyright UNIV HOUSTON
dc.rightsclosedAccess
dc.subjectLattice of T(1)-topologies
dc.subjectposet of Hausdorff topologies
dc.subjectupper topology
dc.subjectsubmaximal space
dc.subjectminimal Hausdorff space
dc.subjectH-closed space
dc.subjectdispersed space
dc.titleWHICH TOPOLOGIES HAVE IMMEDIATE PREDECESSORS IN THE POSET OF HAUSDORFF TOPOLOGIES?
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución