dc.creatorBREMNER, Murray R.
dc.creatorPERESI, Luiz A.
dc.date.accessioned2012-10-20T04:50:20Z
dc.date.accessioned2018-07-04T15:46:43Z
dc.date.available2012-10-20T04:50:20Z
dc.date.available2018-07-04T15:46:43Z
dc.date.created2012-10-20T04:50:20Z
dc.date.issued2009
dc.identifierLINEAR ALGEBRA AND ITS APPLICATIONS, v.430, n.2/Mar, p.642-659, 2009
dc.identifier0024-3795
dc.identifierhttp://producao.usp.br/handle/BDPI/30603
dc.identifier10.1016/j.laa.2008.09.003
dc.identifierhttp://dx.doi.org/10.1016/j.laa.2008.09.003
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627242
dc.description.abstractThe authors` recent classification of trilinear operations includes, among other cases, a fourth family of operations with parameter q epsilon Q boolean OR {infinity}, and weakly commutative and weakly anticommutative operations. These operations satisfy polynomial identities in degree 3 and further identities in degree 5. For each operation, using the row canonical form of the expansion matrix E to find the identities in degree 5 gives extremely complicated results. We use lattice basis reduction to simplify these identities: we compute the Hermite normal form H of E(t), obtain a basis of the nullspace lattice from the last rows of a matrix U for which UE(t) = H, and then use the LLL algorithm to reduce the basis. (C) 2008 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE INC
dc.relationLinear Algebra and Its Applications
dc.rightsCopyright ELSEVIER SCIENCE INC
dc.rightsclosedAccess
dc.subjectNonassociative algebra
dc.subjectLLL algorithm
dc.subjectHermite normal form
dc.titleAn application of lattice basis reduction to polynomial identities for algebraic structures
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución