dc.creatorGONCALVES, Daciberg L.
dc.creatorKOSCHORKE, Ulrich
dc.date.accessioned2012-10-20T04:50:16Z
dc.date.accessioned2018-07-04T15:46:40Z
dc.date.available2012-10-20T04:50:16Z
dc.date.available2018-07-04T15:46:40Z
dc.date.created2012-10-20T04:50:16Z
dc.date.issued2009
dc.identifierTOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, v.33, n.1, p.85-103, 2009
dc.identifier1230-3429
dc.identifierhttp://producao.usp.br/handle/BDPI/30595
dc.identifierhttp://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000264313100007&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627234
dc.description.abstractLet M -> B, N -> B be fibrations and f(1), f(2): M -> N be a pair of fibre-preserving maps. Using normal bordism techniques we define an invariant which is an obstruction to deforming the pair f(1), f(2) over B to a coincidence free pair of maps. In the special case where the two fibrations axe the same and one of the maps is the identity, a weak version of our omega-invariant turns out to equal Dold`s fixed point index of fibre-preserving maps. The concepts of Reidemeister classes and Nielsen coincidence classes over B are developed. As an illustration we compute e.g. the minimal number of coincidence components for all homotopy classes of maps between S(1)-bundles over S(1) as well as their Nielsen and Reidemeister numbers.
dc.languageeng
dc.publisherJULIUSZ SCHAUDER CTR NONLINEAR STUDIES
dc.relationTopological Methods in Nonlinear Analysis
dc.rightsCopyright JULIUSZ SCHAUDER CTR NONLINEAR STUDIES
dc.rightsrestrictedAccess
dc.subjectCoincidence
dc.subjectfixed point
dc.subjectmap over B
dc.subjectnormal bordism
dc.subjectomega-invariant
dc.subjectNielsen number
dc.subjectReidemeister class
dc.subjectDold`s index
dc.subjectfibration
dc.titleNIELSEN COINCIDENCE THEORY OF FIBRE-PRESERVING MAPS AND DOLD`S FIXED POINT INDEX
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución