dc.creatorCOLOMBINI, Ferruccio
dc.creatorCORDARO, Paulo D.
dc.creatorPERNAZZA, Ludovico
dc.date.accessioned2012-10-20T04:49:41Z
dc.date.accessioned2018-07-04T15:46:30Z
dc.date.available2012-10-20T04:49:41Z
dc.date.available2018-07-04T15:46:30Z
dc.date.created2012-10-20T04:49:41Z
dc.date.issued2010
dc.identifierJOURNAL OF FUNCTIONAL ANALYSIS, v.258, n.10, p.3469-3491, 2010
dc.identifier0022-1236
dc.identifierhttp://producao.usp.br/handle/BDPI/30552
dc.identifier10.1016/j.jfa.2009.12.004
dc.identifierhttp://dx.doi.org/10.1016/j.jfa.2009.12.004
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627191
dc.description.abstractMotivated by the celebrated example of Y. Kannai of a linear partial differential operator which is hypoelliptic but not locally solvable, we consider it class of evolution operators with real-analytic coefficients and study their local solvability both in L(2) and in the weak sense. In order to do so we are led to propose a generalization of the Nirenberg-Treves condition (psi) which is suitable to our study. (C) 2009 Published by Elsevier Inc.
dc.languageeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relationJournal of Functional Analysis
dc.rightsCopyright ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsclosedAccess
dc.subjectLocal solvability
dc.subjectLinear PDE
dc.subjectEvolution equations
dc.titleLocal solvability for a class of evolution equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución