dc.creatorLORA, Mayra Ivanoff
dc.creatorSINGER, Julio M.
dc.date.accessioned2012-10-20T04:44:51Z
dc.date.accessioned2018-07-04T15:46:24Z
dc.date.available2012-10-20T04:44:51Z
dc.date.available2018-07-04T15:46:24Z
dc.date.created2012-10-20T04:44:51Z
dc.date.issued2008
dc.identifierSTATISTICS IN MEDICINE, v.27, n.17, p.3366-3381, 2008
dc.identifier0277-6715
dc.identifierhttp://producao.usp.br/handle/BDPI/30529
dc.identifier10.1002/sim.3303
dc.identifierhttp://dx.doi.org/10.1002/sim.3303
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627168
dc.description.abstractWe analyze data obtained from a study designed to evaluate training effects on the performance of certain motor activities of Parkinson`s disease patients. Maximum likelihood methods were used to fit beta-binomial/Poisson regression models tailored to evaluate the effects of training on the numbers of attempted and successful specified manual movements in 1 min periods, controlling for disease stage and use of the preferred hand. We extend models previously considered by other authors in univariate settings to account for the repeated measures nature of the data. The results suggest that the expected number of attempts and successes increase with training, except for patients with advanced stages of the disease using the non-preferred hand. Copyright (c) 2008 John Wiley & Sons, Ltd.
dc.languageeng
dc.publisherJOHN WILEY & SONS LTD
dc.relationStatistics in Medicine
dc.rightsCopyright JOHN WILEY & SONS LTD
dc.rightsclosedAccess
dc.subjectbivariate counts
dc.subjectlongitudinal data
dc.subjectoverdispersion
dc.subjectrandom effects
dc.subjectregression models
dc.titleBeta-binomial/Poisson regression models for repeated bivariate counts
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución