dc.creatorEVANS, Martin R.
dc.creatorFERRARI, Pablo A.
dc.creatorMALLICK, Kirone
dc.date.accessioned2012-10-20T04:44:38Z
dc.date.accessioned2018-07-04T15:46:18Z
dc.date.available2012-10-20T04:44:38Z
dc.date.available2018-07-04T15:46:18Z
dc.date.created2012-10-20T04:44:38Z
dc.date.issued2009
dc.identifierJOURNAL OF STATISTICAL PHYSICS, v.135, n.2, p.217-239, 2009
dc.identifier0022-4715
dc.identifierhttp://producao.usp.br/handle/BDPI/30499
dc.identifier10.1007/s10955-009-9696-2
dc.identifierhttp://dx.doi.org/10.1007/s10955-009-9696-2
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627138
dc.description.abstractIn this work we construct the stationary measure of the N species totally asymmetric simple exclusion process in a matrix product formulation. We make the connection between the matrix product formulation and the queueing theory picture of Ferrari and Martin. In particular, in the standard representation, the matrices act on the space of queue lengths. For N > 2 the matrices in fact become tensor products of elements of quadratic algebras. This enables us to give a purely algebraic proof of the stationary measure which we present for N=3.
dc.languageeng
dc.publisherSPRINGER
dc.relationJournal of Statistical Physics
dc.rightsCopyright SPRINGER
dc.rightsrestrictedAccess
dc.subjectTotally asymmetric simple exclusion process
dc.subjectMulti-species systems
dc.subjectStationary states
dc.subjectMatrix representation
dc.titleMatrix Representation of the Stationary Measure for the Multispecies TASEP
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución