dc.creatorBELITSKY, V.
dc.creatorSCHUETZ, G. M.
dc.date.accessioned2012-10-20T04:44:36Z
dc.date.accessioned2018-07-04T15:46:15Z
dc.date.available2012-10-20T04:44:36Z
dc.date.available2018-07-04T15:46:15Z
dc.date.created2012-10-20T04:44:36Z
dc.date.issued2011
dc.identifierJOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011
dc.identifier1742-5468
dc.identifierhttp://producao.usp.br/handle/BDPI/30493
dc.identifier10.1088/1742-5468/2011/07/P07007
dc.identifierhttp://dx.doi.org/10.1088/1742-5468/2011/07/P07007
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627132
dc.description.abstractWe consider the time evolution of an exactly solvable cellular automaton with random initial conditions both in the large-scale hydrodynamic limit and on the microscopic level. This model is a version of the totally asymmetric simple exclusion process with sublattice parallel update and thus may serve as a model for studying traffic jams in systems of self-driven particles. We study the emergence of shocks from the microscopic dynamics of the model. In particular, we introduce shock measures whose time evolution we can compute explicitly, both in the thermodynamic limit and for open boundaries where a boundary-induced phase transition driven by the motion of a shock occurs. The motion of the shock, which results from the collective dynamics of the exclusion particles, is a random walk with an internal degree of freedom that determines the jump direction. This type of hopping dynamics is reminiscent of some transport phenomena in biological systems.
dc.languageeng
dc.publisherIOP PUBLISHING LTD
dc.relationJournal of Statistical Mechanics-theory and Experiment
dc.rightsCopyright IOP PUBLISHING LTD
dc.rightsrestrictedAccess
dc.subjectcellular automata
dc.subjectdriven diffusive systems (theory)
dc.titleCellular automaton model for molecular traffic jams
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución