dc.creatorBAZAN, Jorge L.
dc.creatorBOLFARINE, Heleno
dc.creatorBRANCO, Marcia D.
dc.date.accessioned2012-10-20T04:44:29Z
dc.date.accessioned2018-07-04T15:46:11Z
dc.date.available2012-10-20T04:44:29Z
dc.date.available2018-07-04T15:46:11Z
dc.date.created2012-10-20T04:44:29Z
dc.date.issued2010
dc.identifierCOMMUNICATIONS IN STATISTICS-THEORY AND METHODS, v.39, n.4, p.678-697, 2010
dc.identifier0361-0926
dc.identifierhttp://producao.usp.br/handle/BDPI/30477
dc.identifier10.1080/03610920902783849
dc.identifierhttp://dx.doi.org/10.1080/03610920902783849
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627116
dc.description.abstractWe review several asymmetrical links for binary regression models and present a unified approach for two skew-probit links proposed in the literature. Moreover, under skew-probit link, conditions for the existence of the ML estimators and the posterior distribution under improper priors are established. The framework proposed here considers two sets of latent variables which are helpful to implement the Bayesian MCMC approach. A simulation study to criteria for models comparison is conducted and two applications are made. Using different Bayesian criteria we show that, for these data sets, the skew-probit links are better than alternative links proposed in the literature.
dc.languageeng
dc.publisherTAYLOR & FRANCIS INC
dc.relationCommunications in Statistics-theory and Methods
dc.rightsCopyright TAYLOR & FRANCIS INC
dc.rightsrestrictedAccess
dc.subjectAsymmetrical links
dc.subjectBayesian estimation
dc.subjectBinary regression
dc.subjectModel comparison
dc.subjectSkew normal
dc.subjectSkew-probit
dc.titleFramework for Skew-Probit Links in Binary Regression
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución