dc.creatorTAMURA, Karin Ayumi
dc.creatorGIAMPAOLI, Viviana
dc.date.accessioned2012-10-20T04:44:29Z
dc.date.accessioned2018-07-04T15:46:10Z
dc.date.available2012-10-20T04:44:29Z
dc.date.available2018-07-04T15:46:10Z
dc.date.created2012-10-20T04:44:29Z
dc.date.issued2010
dc.identifierCOMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, v.39, n.6, p.1083-1096, 2010
dc.identifier0361-0918
dc.identifierhttp://producao.usp.br/handle/BDPI/30476
dc.identifier10.1080/03610911003790106
dc.identifierhttp://dx.doi.org/10.1080/03610911003790106
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627115
dc.description.abstractThe purpose of this article is to present a new method to predict the response variable of an observation in a new cluster for a multilevel logistic regression. The central idea is based on the empirical best estimator for the random effect. Two estimation methods for multilevel model are compared: penalized quasi-likelihood and Gauss-Hermite quadrature. The performance measures for the prediction of the probability for a new cluster observation of the multilevel logistic model in comparison with the usual logistic model are examined through simulations and an application.
dc.languageeng
dc.publisherTAYLOR & FRANCIS INC
dc.relationCommunications in Statistics-simulation and Computation
dc.rightsCopyright TAYLOR & FRANCIS INC
dc.rightsrestrictedAccess
dc.subjectLogistic regression
dc.subjectMultilevel model
dc.subjectVariable response prediction
dc.titlePrediction in Multilevel Logistic Regression
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución