dc.creator | OSPINA, Raydonal | |
dc.creator | FERRARI, Silvia L. P. | |
dc.date.accessioned | 2012-10-20T04:44:28Z | |
dc.date.accessioned | 2018-07-04T15:46:10Z | |
dc.date.available | 2012-10-20T04:44:28Z | |
dc.date.available | 2018-07-04T15:46:10Z | |
dc.date.created | 2012-10-20T04:44:28Z | |
dc.date.issued | 2010 | |
dc.identifier | STATISTICAL PAPERS, v.51, n.1, p.111-126, 2010 | |
dc.identifier | 0932-5026 | |
dc.identifier | http://producao.usp.br/handle/BDPI/30474 | |
dc.identifier | 10.1007/s00362-008-0125-4 | |
dc.identifier | http://dx.doi.org/10.1007/s00362-008-0125-4 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1627113 | |
dc.description.abstract | This paper considers the issue of modeling fractional data observed on [0,1), (0,1] or [0,1]. Mixed continuous-discrete distributions are proposed. The beta distribution is used to describe the continuous component of the model since its density can have quite different shapes depending on the values of the two parameters that index the distribution. Properties of the proposed distributions are examined. Also, estimation based on maximum likelihood and conditional moments is discussed. Finally, practical applications that employ real data are presented. | |
dc.language | eng | |
dc.publisher | SPRINGER | |
dc.relation | Statistical Papers | |
dc.rights | Copyright SPRINGER | |
dc.rights | restrictedAccess | |
dc.subject | Beta distribution | |
dc.subject | Inflated beta distribution | |
dc.subject | Fractional data | |
dc.subject | Maximum likelihood estimation | |
dc.subject | Conditional moments | |
dc.subject | Mixture | |
dc.subject | Proportions | |
dc.title | Inflated beta distributions | |
dc.type | Artículos de revistas | |