dc.creatorCASANOVA, Maria P.
dc.creatorIGLESIAS, Pilar
dc.creatorBOLFARINE, Heleno
dc.creatorSALINAS, Victor H.
dc.creatorPENA, Alexis
dc.date.accessioned2012-10-20T04:44:27Z
dc.date.accessioned2018-07-04T15:46:10Z
dc.date.available2012-10-20T04:44:27Z
dc.date.available2018-07-04T15:46:10Z
dc.date.created2012-10-20T04:44:27Z
dc.date.issued2010
dc.identifierJOURNAL OF MULTIVARIATE ANALYSIS, v.101, n.3, p.512-524, 2010
dc.identifier0047-259X
dc.identifierhttp://producao.usp.br/handle/BDPI/30472
dc.identifier10.1016/j.jmva.2009.11.004
dc.identifierhttp://dx.doi.org/10.1016/j.jmva.2009.11.004
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627111
dc.description.abstractThis work presents a Bayesian semiparametric approach for dealing with regression models where the covariate is measured with error. Given that (1) the error normality assumption is very restrictive, and (2) assuming a specific elliptical distribution for errors (Student-t for example), may be somewhat presumptuous; there is need for more flexible methods, in terms of assuming only symmetry of errors (admitting unknown kurtosis). In this sense, the main advantage of this extended Bayesian approach is the possibility of considering generalizations of the elliptical family of models by using Dirichlet process priors in dependent and independent situations. Conditional posterior distributions are implemented, allowing the use of Markov Chain Monte Carlo (MCMC), to generate the posterior distributions. An interesting result shown is that the Dirichlet process prior is not updated in the case of the dependent elliptical model. Furthermore, an analysis of a real data set is reported to illustrate the usefulness of our approach, in dealing with outliers. Finally, semiparametric proposed models and parametric normal model are compared, graphically with the posterior distribution density of the coefficients. (C) 2009 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherELSEVIER INC
dc.relationJournal of Multivariate Analysis
dc.rightsCopyright ELSEVIER INC
dc.rightsrestrictedAccess
dc.subjectClassical measurement error model
dc.subjectHierarchical elliptical model
dc.subjectPosterior distribution
dc.subjectDirichlet process
dc.subjectGibbs sampling
dc.titleSemiparametric Bayesian measurement error modeling
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución