dc.creator | VENEZUELA, Maria Kelly | |
dc.creator | SANDOVAL, Monica Carneiro | |
dc.creator | BOTTER, Denise Aparecida | |
dc.date.accessioned | 2012-10-20T04:44:12Z | |
dc.date.accessioned | 2018-07-04T15:46:03Z | |
dc.date.available | 2012-10-20T04:44:12Z | |
dc.date.available | 2018-07-04T15:46:03Z | |
dc.date.created | 2012-10-20T04:44:12Z | |
dc.date.issued | 2011 | |
dc.identifier | COMPUTATIONAL STATISTICS & DATA ANALYSIS, v.55, n.4, p.1867-1883, 2011 | |
dc.identifier | 0167-9473 | |
dc.identifier | http://producao.usp.br/handle/BDPI/30443 | |
dc.identifier | 10.1016/j.csda.2010.10.020 | |
dc.identifier | http://dx.doi.org/10.1016/j.csda.2010.10.020 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1627082 | |
dc.description.abstract | Local influence diagnostics based on estimating equations as the role of a gradient vector derived from any fit function are developed for repeated measures regression analysis. Our proposal generalizes tools used in other studies (Cook, 1986: Cadigan and Farrell, 2002), considering herein local influence diagnostics for a statistical model where estimation involves an estimating equation in which all observations are not necessarily independent of each other. Moreover, the measures of local influence are illustrated with some simulated data sets to assess influential observations. Applications using real data are presented. (C) 2010 Elsevier B.V. All rights reserved. | |
dc.language | eng | |
dc.publisher | ELSEVIER SCIENCE BV | |
dc.relation | Computational Statistics & Data Analysis | |
dc.rights | Copyright ELSEVIER SCIENCE BV | |
dc.rights | restrictedAccess | |
dc.subject | Diagnostic techniques | |
dc.subject | Local influence | |
dc.subject | Generalized estimating equations | |
dc.subject | Repeated measures | |
dc.subject | Longitudinal data | |
dc.title | Local influence in estimating equations | |
dc.type | Artículos de revistas | |