dc.creatorPATRIOTA, Alexandre G.
dc.creatorLEMONTE, Artur J.
dc.creatorBOLFARINE, Heleno
dc.date.accessioned2012-10-20T04:44:06Z
dc.date.accessioned2018-07-04T15:46:01Z
dc.date.available2012-10-20T04:44:06Z
dc.date.available2018-07-04T15:46:01Z
dc.date.created2012-10-20T04:44:06Z
dc.date.issued2011
dc.identifierSTATISTICAL PAPERS, v.52, n.2, p.455-467, 2011
dc.identifier0932-5026
dc.identifierhttp://producao.usp.br/handle/BDPI/30435
dc.identifier10.1007/s00362-009-0243-7
dc.identifierhttp://dx.doi.org/10.1007/s00362-009-0243-7
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627074
dc.description.abstractThis paper develops a bias correction scheme for a multivariate heteroskedastic errors-in-variables model. The applicability of this model is justified in areas such as astrophysics, epidemiology and analytical chemistry, where the variables are subject to measurement errors and the variances vary with the observations. We conduct Monte Carlo simulations to investigate the performance of the corrected estimators. The numerical results show that the bias correction scheme yields nearly unbiased estimates. We also give an application to a real data set.
dc.languageeng
dc.publisherSPRINGER
dc.relationStatistical Papers
dc.rightsCopyright SPRINGER
dc.rightsclosedAccess
dc.subjectBias correction
dc.subjectErrors-in-variables model
dc.subjectHeteroskedastic model
dc.subjectMaximum-likelihood estimation
dc.titleImproved maximum likelihood estimators in a heteroskedastic errors-in-variables model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución