dc.creatorSATO, Joao R.
dc.creatorCOSTAFREDA, Sergi
dc.creatorMORETTIN, Pedro A.
dc.creatorBRAMMER, Michael John
dc.date.accessioned2012-10-20T04:44:05Z
dc.date.accessioned2018-07-04T15:46:00Z
dc.date.available2012-10-20T04:44:05Z
dc.date.available2018-07-04T15:46:00Z
dc.date.created2012-10-20T04:44:05Z
dc.date.issued2008
dc.identifierCOMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, v.37, n.6, p.1183-1197, 2008
dc.identifier0361-0918
dc.identifierhttp://producao.usp.br/handle/BDPI/30433
dc.identifier10.1080/03610910801942422
dc.identifierhttp://dx.doi.org/10.1080/03610910801942422
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627072
dc.description.abstractMost studies involving statistical time series analysis rely on assumptions of linearity, which by its simplicity facilitates parameter interpretation and estimation. However, the linearity assumption may be too restrictive for many practical applications. The implementation of nonlinear models in time series analysis involves the estimation of a large set of parameters, frequently leading to overfitting problems. In this article, a predictability coefficient is estimated using a combination of nonlinear autoregressive models and the use of support vector regression in this model is explored. We illustrate the usefulness and interpretability of results by using electroencephalographic records of an epileptic patient.
dc.languageeng
dc.publisherTAYLOR & FRANCIS INC
dc.relationCommunications in Statistics-simulation and Computation
dc.rightsCopyright TAYLOR & FRANCIS INC
dc.rightsrestrictedAccess
dc.subjectautoregressive
dc.subjectmachine learning
dc.subjectnon-linear
dc.subjectprediction
dc.subjectregression
dc.subjectsupport vector
dc.titleMeasuring time series predictability using support vector regression
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución