dc.creatorBIRGIN, E. G.
dc.creatorMARTINEZ, J. M.
dc.date.accessioned2012-10-20T04:42:54Z
dc.date.accessioned2018-07-04T15:45:57Z
dc.date.available2012-10-20T04:42:54Z
dc.date.available2018-07-04T15:45:57Z
dc.date.created2012-10-20T04:42:54Z
dc.date.issued2008
dc.identifierOPTIMIZATION METHODS & SOFTWARE, v.23, n.2, p.177-195, 2008
dc.identifier1055-6788
dc.identifierhttp://producao.usp.br/handle/BDPI/30418
dc.identifier10.1080/10556780701577730
dc.identifierhttp://dx.doi.org/10.1080/10556780701577730
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627057
dc.description.abstractOptimization methods that employ the classical Powell-Hestenes-Rockafellar augmented Lagrangian are useful tools for solving nonlinear programming problems. Their reputation decreased in the last 10 years due to the comparative success of interior-point Newtonian algorithms, which are asymptotically faster. In this research, a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its `pure` counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the interior-point method is replaced by the Newtonian resolution of a Karush-Kuhn-Tucker (KKT) system identified by the augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:http://www.ime.usp.br/similar to egbirgin/tango/.
dc.languageeng
dc.publisherTAYLOR & FRANCIS LTD
dc.relationOptimization Methods & Software
dc.rightsCopyright TAYLOR & FRANCIS LTD
dc.rightsrestrictedAccess
dc.subjectnonlinear programming
dc.subjectaugmented Lagrangian methods
dc.subjectinterior-point methods
dc.subjectNewton`s method
dc.subjectexperiments
dc.titleImproving ultimate convergence of an augmented Lagrangian method
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución