dc.creatorBIRGIN, E. G.
dc.creatorMARTINEZ, J. M.
dc.date.accessioned2012-10-20T04:42:54Z
dc.date.accessioned2018-07-04T15:45:57Z
dc.date.available2012-10-20T04:42:54Z
dc.date.available2018-07-04T15:45:57Z
dc.date.created2012-10-20T04:42:54Z
dc.date.issued2008
dc.identifierCOMPUTATIONAL OPTIMIZATION AND APPLICATIONS, v.39, n.1, p.1-16, 2008
dc.identifier0926-6003
dc.identifierhttp://producao.usp.br/handle/BDPI/30417
dc.identifier10.1007/s10589-007-9050-z
dc.identifierhttp://dx.doi.org/10.1007/s10589-007-9050-z
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627056
dc.description.abstractAugmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell-Hestenes-Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.
dc.languageeng
dc.publisherSPRINGER
dc.relationComputational Optimization and Applications
dc.rightsCopyright SPRINGER
dc.rightsrestrictedAccess
dc.subjectnonlinear programming
dc.subjectaugmented Lagrangian methods
dc.subjectbox constraints
dc.subjectquasi-Newton
dc.subjecttruncated-Newton
dc.titleStructured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución