dc.creatorMANIC, Gordana
dc.creatorWAKABAYASHI, Yoshiko
dc.date.accessioned2012-10-20T04:42:49Z
dc.date.accessioned2018-07-04T15:45:54Z
dc.date.available2012-10-20T04:42:49Z
dc.date.available2018-07-04T15:45:54Z
dc.date.created2012-10-20T04:42:49Z
dc.date.issued2008
dc.identifierDISCRETE MATHEMATICS, v.308, n.8, p.1455-1471, 2008
dc.identifier0012-365X
dc.identifierhttp://producao.usp.br/handle/BDPI/30409
dc.identifier10.1016/j.disc.2007.07.100
dc.identifierhttp://dx.doi.org/10.1016/j.disc.2007.07.100
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627048
dc.description.abstractWe consider the problems of finding the maximum number of vertex-disjoint triangles (VTP) and edge-disjoint triangles (ETP) in a simple graph. Both problems are NP-hard. The algorithm with the best approximation ratio known so far for these problems has ratio 3/2 + epsilon, a result that follows from a more general algorithm for set packing obtained by Hurkens and Schrijver [On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems, SIAM J. Discrete Math. 2(1) (1989) 68-72]. We present improvements on the approximation ratio for restricted cases of VTP and ETP that are known to be APX-hard: we give an approximation algorithm for VTP on graphs with maximum degree 4 with ratio slightly less than 1.2, and for ETP on graphs with maximum degree 5 with ratio 4/3. We also present an exact linear-time algorithm for VTP on the class of indifference graphs. (C) 2007 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationDiscrete Mathematics
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectpacking triangles
dc.subjectapproximation algorithm
dc.subjectpolynomial algorithm
dc.subjectlow degree graph
dc.subjectindifference graph
dc.titlePacking triangles in low degree graphs and indifference graphs
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución