dc.creatorLEVADA, Alexandre L. M.
dc.creatorMASCARENHAS, Nelson D. A.
dc.creatorTANNUS, Alberto
dc.date.accessioned2012-10-20T04:21:47Z
dc.date.accessioned2018-07-04T15:44:04Z
dc.date.available2012-10-20T04:21:47Z
dc.date.available2018-07-04T15:44:04Z
dc.date.created2012-10-20T04:21:47Z
dc.date.issued2008
dc.identifierIEEE GEOSCIENCE AND REMOTE SENSING LETTERS, v.5, n.3, p.522-526, 2008
dc.identifier1545-598X
dc.identifierhttp://producao.usp.br/handle/BDPI/30018
dc.identifier10.1109/LGRS.2008.920909
dc.identifierhttp://dx.doi.org/10.1109/LGRS.2008.920909
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1626658
dc.description.abstractThis letter presents pseudolikelihood equations for the estimation of the Potts Markov random field model parameter on higher order neighborhood systems. The derived equation for second-order systems is a significantly reduced version of a recent result found in the literature (from 67 to 22 terms). Also, with the proposed method, a completely original equation for Potts model parameter estimation in third-order systems was obtained. These equations allow the modeling of less restrictive contextual systems for a large number of applications in a computationally feasible way. Experiments with both simulated and real remote sensing images provided good results.
dc.languageeng
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.relationIeee Geoscience and Remote Sensing Letters
dc.rightsCopyright IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.rightsrestrictedAccess
dc.subjectMarkov random fields (MRFs)
dc.subjectmaximum pseudolikelihood (MPL) estimation
dc.subjectMonte Carlo simulation
dc.subjectPotts model
dc.titlePseudolikelihood equations for Potts MRF model parameter estimation on higher order neighborhood systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución