dc.creator | CUCCHIERI, Attilio | |
dc.creator | MAAS, Axel | |
dc.creator | MENDES, Tereza | |
dc.date.accessioned | 2012-10-20T04:21:20Z | |
dc.date.accessioned | 2018-07-04T15:43:49Z | |
dc.date.available | 2012-10-20T04:21:20Z | |
dc.date.available | 2018-07-04T15:43:49Z | |
dc.date.created | 2012-10-20T04:21:20Z | |
dc.date.issued | 2009 | |
dc.identifier | COMPUTER PHYSICS COMMUNICATIONS, v.180, n.2, p.215-225, 2009 | |
dc.identifier | 0010-4655 | |
dc.identifier | http://producao.usp.br/handle/BDPI/29968 | |
dc.identifier | 10.1016/j.cpc.2008.09.011 | |
dc.identifier | http://dx.doi.org/10.1016/j.cpc.2008.09.011 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1626608 | |
dc.description.abstract | Linear covariant gauges, such as Feynman gauge, are very useful in perturbative calculations. Their non-perturbative formulation is, however, highly non-trivial. In particular, it is a challenge to define linear covariant gauges on a lattice. We consider a class of gauges in lattice gauge theory that coincides with the perturbative definition of linear covariant gauges in the formal continuum limit. The corresponding gauge-fixing procedure is described and analyzed in detail, with an application to the pure SU(2) case. In addition, results for the gluon propagator in the two-dimensional case are given. (C) 2008 Elsevier B.V. All rights reserved. | |
dc.language | eng | |
dc.publisher | ELSEVIER SCIENCE BV | |
dc.relation | Computer Physics Communications | |
dc.rights | Copyright ELSEVIER SCIENCE BV | |
dc.rights | restrictedAccess | |
dc.subject | Lattice gauge theory | |
dc.subject | Gauge fixing | |
dc.subject | Covariant gauges | |
dc.title | Linear covariant gauges on the lattice | |
dc.type | Artículos de revistas | |