dc.creatorALCARAZ, Francisco Castilho
dc.creatorRITTENBERG, Vladimir
dc.date.accessioned2012-10-20T04:17:39Z
dc.date.accessioned2018-07-04T15:42:43Z
dc.date.available2012-10-20T04:17:39Z
dc.date.available2018-07-04T15:42:43Z
dc.date.created2012-10-20T04:17:39Z
dc.date.issued2010
dc.identifierJOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010
dc.identifier1742-5468
dc.identifierhttp://producao.usp.br/handle/BDPI/29846
dc.identifier10.1088/1742-5468/2010/12/P12032
dc.identifierhttp://dx.doi.org/10.1088/1742-5468/2010/12/P12032
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1626486
dc.description.abstractWe present a one-parameter extension of the raise and peel one-dimensional growth model. The model is defined in the configuration space of Dyck (RSOS) paths. Tiles from a rarefied gas hit the interface and change its shape. The adsorption rates are local but the desorption rates are non-local; they depend not only on the cluster hit by the tile but also on the total number of peaks (local maxima) belonging to all the clusters of the configuration. The domain of the parameter is determined by the condition that the rates are non-negative. In the finite-size scaling limit, the model is conformal invariant in the whole open domain. The parameter appears in the sound velocity only. At the boundary of the domain, the stationary state is an adsorbing state and conformal invariance is lost. The model allows us to check the universality of non-local observables in the raise and peel model. An example is given.
dc.languageeng
dc.publisherIOP PUBLISHING LTD
dc.relationJournal of Statistical Mechanics-theory and Experiment
dc.rightsCopyright IOP PUBLISHING LTD
dc.rightsrestrictedAccess
dc.subjectconformal field theory
dc.subjectintegrable spin chains (vertex models)
dc.subjectcritical exponents and amplitudes (theory)
dc.subjectstochastic particle dynamics (theory)
dc.titleA conformal invariant growth model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución