dc.creatorAMANCIO, D. R.
dc.creatorNUNES, M. G. V.
dc.creatorOLIVEIRA JUNIOR, Osvaldo Novais de
dc.creatorPARDO, T. A. S.
dc.creatorANTIQUEIRA, L.
dc.creatorCOSTA, Luciano da Fontoura
dc.date.accessioned2012-10-20T04:17:20Z
dc.date.accessioned2018-07-04T15:42:41Z
dc.date.available2012-10-20T04:17:20Z
dc.date.available2018-07-04T15:42:41Z
dc.date.created2012-10-20T04:17:20Z
dc.date.issued2011
dc.identifierPHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, v.390, n.1, p.131-142, 2011
dc.identifier0378-4371
dc.identifierhttp://producao.usp.br/handle/BDPI/29835
dc.identifier10.1016/j.physa.2010.08.052
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2010.08.052
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1626475
dc.description.abstractEstablishing metrics to assess machine translation (MT) systems automatically is now crucial owing to the widespread use of MT over the web. In this study we show that such evaluation can be done by modeling text as complex networks. Specifically, we extend our previous work by employing additional metrics of complex networks, whose results were used as input for machine learning methods and allowed MT texts of distinct qualities to be distinguished. Also shown is that the node-to-node mapping between source and target texts (English-Portuguese and Spanish-Portuguese pairs) can be improved by adding further hierarchical levels for the metrics out-degree, in-degree, hierarchical common degree, cluster coefficient, inter-ring degree, intra-ring degree and convergence ratio. The results presented here amount to a proof-of-principle that the possible capturing of a wider context with the hierarchical levels may be combined with machine learning methods to yield an approach for assessing the quality of MT systems. (C) 2010 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationPhysica A-statistical Mechanics and Its Applications
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectMachine translation
dc.subjectEvaluation
dc.subjectComplex networks
dc.subjectMachine learning
dc.titleUsing metrics from complex networks to evaluate machine translation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución