dc.creatorFERREIRA, L. A.
dc.creatorZAKRZEWSKI, Wojtek J.
dc.date.accessioned2012-10-20T04:17:07Z
dc.date.accessioned2018-07-04T15:42:35Z
dc.date.available2012-10-20T04:17:07Z
dc.date.available2018-07-04T15:42:35Z
dc.date.created2012-10-20T04:17:07Z
dc.date.issued2011
dc.identifierREPORTS ON MATHEMATICAL PHYSICS, v.67, n.2, p.197-209, 2011
dc.identifier0034-4877
dc.identifierhttp://producao.usp.br/handle/BDPI/29814
dc.identifierhttp://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000291374500003&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1626454
dc.description.abstractIn this paper we present our preliminary results which suggest that some field theory models are `almost` integrable; i.e. they possess a large number of `almost` conserved quantities. First we demonstrate this, in some detail, on a class of models which generalise sine-Gordon model in (1+1) dimensions. Then, we point out that many field configurations of these models look like those of the integrable systems and others are very close to being integrable. Finally we attempt to quantify these claims looking in particular, both analytically and numerically, at some long lived field configurations which resemble breathers.
dc.languageeng
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relationReports on Mathematical Physics
dc.rightsCopyright PERGAMON-ELSEVIER SCIENCE LTD
dc.rightsrestrictedAccess
dc.subjectsolitons
dc.subjectintegrability
dc.subjectquasi-integrability
dc.subjectfield theory
dc.subjectstability
dc.titleSOME COMMENTS ON QUASI-INTEGRABILITY
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución