dc.creatorBACKES, Andre Ricardo
dc.creatorBRUNO, Odemir Martinez
dc.date.accessioned2012-10-20T04:15:29Z
dc.date.accessioned2018-07-04T15:41:51Z
dc.date.available2012-10-20T04:15:29Z
dc.date.available2018-07-04T15:41:51Z
dc.date.created2012-10-20T04:15:29Z
dc.date.issued2010
dc.identifierPATTERN RECOGNITION LETTERS, v.31, n.1, p.44-51, 2010
dc.identifier0167-8655
dc.identifierhttp://producao.usp.br/handle/BDPI/29641
dc.identifier10.1016/j.patrec.2009.08.007
dc.identifierhttp://dx.doi.org/10.1016/j.patrec.2009.08.007
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1626281
dc.description.abstractShape provides one of the most relevant information about an object. This makes shape one of the most important visual attributes used to characterize objects. This paper introduces a novel approach for shape characterization, which combines modeling shape into a complex network and the analysis of its complexity in a dynamic evolution context. Descriptors computed through this approach show to be efficient in shape characterization, incorporating many characteristics, such as scale and rotation invariant. Experiments using two different shape databases (an artificial shapes database and a leaf shape database) are presented in order to evaluate the method. and its results are compared to traditional shape analysis methods found in literature. (C) 2009 Published by Elsevier B.V.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationPattern Recognition Letters
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectShape analysis
dc.subjectShape recognition
dc.subjectComplex network
dc.subjectMulti-scale Fractal Dimension
dc.titleShape classification using complex network and Multi-scale Fractal Dimension
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución