dc.creatorBACKES, Andre R.
dc.creatorBRUNO, Odemir M.
dc.date.accessioned2012-10-20T04:15:04Z
dc.date.accessioned2018-07-04T15:41:44Z
dc.date.available2012-10-20T04:15:04Z
dc.date.available2018-07-04T15:41:44Z
dc.date.created2012-10-20T04:15:04Z
dc.date.issued2010
dc.identifierMACHINE VISION AND APPLICATIONS, v.21, n.3, p.217-227, 2010
dc.identifier0932-8092
dc.identifierhttp://producao.usp.br/handle/BDPI/29614
dc.identifier10.1007/s00138-008-0150-2
dc.identifierhttp://dx.doi.org/10.1007/s00138-008-0150-2
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1626254
dc.description.abstractTexture is one of the most important visual attributes used in image analysis. It is used in many content-based image retrieval systems, where it allows the identification of a larger number of images from distinct origins. This paper presents a novel approach for image analysis and retrieval based on complexity analysis. The approach consists of a texture segmentation step, performed by complexity analysis through BoxCounting fractal dimension, followed by the estimation of complexity of each computed region by multiscale fractal dimension. Experiments have been performed with MRI database in both pattern recognition and image retrieval contexts. Results show the accuracy of the method and also indicate how the performance changes as the texture segmentation process is altered.
dc.languageeng
dc.publisherSPRINGER
dc.relationMachine Vision and Applications
dc.rightsCopyright SPRINGER
dc.rightsrestrictedAccess
dc.subjectMedical imaging
dc.subjectImage retrieval
dc.subjectTexture filter
dc.subjectImage analysis
dc.subjectFractal dimension
dc.subjectPattern recognition
dc.titleMedical image retrieval based on complexity analysis
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución