dc.creatorGuitman, Dmitri Maximovitch
dc.creatorTYUTIN, I. V.
dc.creatorVORONOV, B. L.
dc.date.accessioned2012-10-20T04:12:21Z
dc.date.accessioned2018-07-04T15:41:04Z
dc.date.available2012-10-20T04:12:21Z
dc.date.available2018-07-04T15:41:04Z
dc.date.created2012-10-20T04:12:21Z
dc.date.issued2010
dc.identifierJOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, v.43, n.14, 2010
dc.identifier1751-8113
dc.identifierhttp://producao.usp.br/handle/BDPI/29473
dc.identifier10.1088/1751-8113/43/14/145205
dc.identifierhttp://dx.doi.org/10.1088/1751-8113/43/14/145205
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1626113
dc.description.abstractIn this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential alpha x(-2). Although the problem is quite old and well studied, we believe that our consideration based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some `paradoxes` inherent in the `naive` quantum-mechanical treatment. Using a self-adjoint extension method, we construct and study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In particular, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.
dc.languageeng
dc.publisherIOP PUBLISHING LTD
dc.relationJournal of Physics A-mathematical and Theoretical
dc.rightsCopyright IOP PUBLISHING LTD
dc.rightsclosedAccess
dc.titleSelf-adjoint extensions and spectral analysis in the Calogero problem
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución