dc.creatorWreszinski, Walter Felipe
dc.date.accessioned2012-10-20T04:06:58Z
dc.date.accessioned2018-07-04T15:40:09Z
dc.date.available2012-10-20T04:06:58Z
dc.date.available2018-07-04T15:40:09Z
dc.date.created2012-10-20T04:06:58Z
dc.date.issued2010
dc.identifierJOURNAL OF STATISTICAL PHYSICS, v.138, n.4/Mai, p.567-578, 2010
dc.identifier0022-4715
dc.identifierhttp://producao.usp.br/handle/BDPI/29266
dc.identifier10.1007/s10955-009-9889-8
dc.identifierhttp://dx.doi.org/10.1007/s10955-009-9889-8
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625906
dc.description.abstractWe consider random generalizations of a quantum model of infinite range introduced by Emch and Radin. The generalizations allow a neat extension from the class l (1) of absolutely summable lattice potentials to the optimal class l (2) of square summable potentials first considered by Khanin and Sinai and generalised by van Enter and van Hemmen. The approach to equilibrium in the case of a Gaussian distribution is proved to be faster than for a Bernoulli distribution for both short-range and long-range lattice potentials. While exponential decay to equilibrium is excluded in the nonrandom l (1) case, it is proved to occur for both short and long range potentials for Gaussian distributions, and for potentials of class l (2) in the Bernoulli case. Open problems are discussed.
dc.languageeng
dc.publisherSPRINGER
dc.relationJournal of Statistical Physics
dc.rightsCopyright SPRINGER
dc.rightsrestrictedAccess
dc.subjectApproach to equilibrium
dc.subjectNon-Markovian
dc.subjectRandom systems
dc.subjectExponential versus non-exponential decay
dc.subjectGaussian and Bernoulli distributions
dc.subjectState-dependent Heisenberg time-evolution
dc.titleApproach to Equilibrium for a Class of Random Quantum Models of Infinite Range
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución