dc.creatorORTORE, Maria Grazia
dc.creatorSPINOZZI, Francesco
dc.creatorMARIANI, Paolo
dc.creatorPACIARONI, Alessandro
dc.creatorBarbosa, Leandro Ramos Souza
dc.creatorAMENITSCH, Heinz
dc.creatorSTEINHART, Milos
dc.creatorOLLIVIER, Jacques
dc.creatorRUSSO, Daniela
dc.date.accessioned2012-10-20T04:04:10Z
dc.date.accessioned2018-07-04T15:39:56Z
dc.date.available2012-10-20T04:04:10Z
dc.date.available2018-07-04T15:39:56Z
dc.date.created2012-10-20T04:04:10Z
dc.date.issued2009
dc.identifierJOURNAL OF THE ROYAL SOCIETY INTERFACE, v.6, p.S619-S634, 2009
dc.identifier1742-5689
dc.identifierhttp://producao.usp.br/handle/BDPI/29215
dc.identifier10.1098/rsif.2009.0163.focus
dc.identifierhttp://dx.doi.org/10.1098/rsif.2009.0163.focus
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625855
dc.description.abstractSmall-angle X-ray scattering (SAXS) and elastic and quasi-elastic neutron scattering techniques were used to investigate the high-pressure-induced changes on interactions, the low-resolution structure and the dynamics of lysozyme in solution. SAXS data, analysed using a global-fit procedure based on a new approach for hydrated protein form factor description, indicate that lysozyme completely maintains its globular structure up to 1500 bar, but significant modi. cations in the protein-protein interaction potential occur at approximately 600-1000 bar. Moreover, the mass density of the protein hydration water shows a clear discontinuity within this pressure range. Neutron scattering experiments indicate that the global and the local lysozyme dynamics change at a similar threshold pressure. A clear evolution of the internal protein dynamics from diffusing to more localized motions has also been probed. Protein structure and dynamics results have then been discussed in the context of protein-water interface and hydration water dynamics. According to SAXS results, the new configuration of water in the first hydration layer induced by pressure is suggested to be at the origin of the observed local mobility changes.
dc.languageeng
dc.publisherROYAL SOC
dc.relationJournal of the Royal Society Interface
dc.rightsCopyright ROYAL SOC
dc.rightsrestrictedAccess
dc.subjectlysozyme
dc.subjectstructure
dc.subjectdynamics
dc.subjectsmall-angle X-ray scattering
dc.subjectquasi-elastic neutron scattering
dc.subjecthigh pressure
dc.titleCombining structure and dynamics: non-denaturing high-pressure effect on lysozyme in solution
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución