dc.creatorCarvalho, Silas Luiz de
dc.creatorMarchetti, Domingos Humberto Urbano
dc.creatorWreszinski, Walter Felipe
dc.date.accessioned2012-10-20T04:03:32Z
dc.date.accessioned2018-07-04T15:39:46Z
dc.date.available2012-10-20T04:03:32Z
dc.date.available2018-07-04T15:39:46Z
dc.date.created2012-10-20T04:03:32Z
dc.date.issued2010
dc.identifierJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.368, n.1, p.218-234, 2010
dc.identifier0022-247X
dc.identifierhttp://producao.usp.br/handle/BDPI/29188
dc.identifier10.1016/j.jmaa.2010.02.046
dc.identifierhttp://dx.doi.org/10.1016/j.jmaa.2010.02.046
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625828
dc.description.abstractWe show that the Hausdorff dimension of the spectral measure of a class of deterministic, i.e. nonrandom, block-Jacobi matrices may be determined with any degree of precision, improving a result of Zlatos [Andrej Zlatos,. Sparse potentials with fractional Hausdorff dimension, J. Funct. Anal. 207 (2004) 216-252]. (C) 2010 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relationJournal of Mathematical Analysis and Applications
dc.rightsCopyright ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsrestrictedAccess
dc.subjectSpectral measure
dc.subjectBlock-Jacobi matrices
dc.subjectSparse potentials
dc.subjectHausdorff dimension
dc.titleSparse block-Jacobi matrices with arbitrarily accurate Hausdorff dimension
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución