dc.creatorSouza, David Rodrigues de
dc.creatorTome, Tania
dc.creatorZIFF, Robert M.
dc.date.accessioned2012-10-20T04:03:21Z
dc.date.accessioned2018-07-04T15:39:42Z
dc.date.available2012-10-20T04:03:21Z
dc.date.available2018-07-04T15:39:42Z
dc.date.created2012-10-20T04:03:21Z
dc.date.issued2011
dc.identifierJOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011
dc.identifier1742-5468
dc.identifierhttp://producao.usp.br/handle/BDPI/29174
dc.identifier10.1088/1742-5468/2011/03/P03006
dc.identifierhttp://dx.doi.org/10.1088/1742-5468/2011/03/P03006
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625814
dc.description.abstractThe critical behavior of the stochastic susceptible-infected-recovered model on a square lattice is obtained by numerical simulations and finite-size scaling. The order parameter as well as the distribution in the number of recovered individuals is determined as a function of the infection rate for several values of the system size. The analysis around criticality is obtained by exploring the close relationship between the present model and standard percolation theory. The quantity UP, equal to the ratio U between the second moment and the squared first moment of the size distribution multiplied by the order parameter P, is shown to have, for a square system, a universal value 1.0167(1) that is the same for site and bond percolation, confirming further that the SIR model is also in the percolation class.
dc.languageeng
dc.publisherIOP PUBLISHING LTD
dc.relationJournal of Statistical Mechanics-theory and Experiment
dc.rightsCopyright IOP PUBLISHING LTD
dc.rightsrestrictedAccess
dc.subjectcritical exponents and amplitudes (theory)
dc.subjectpercolation problems (theory)
dc.subjectepidemic modelling
dc.titleA new scale-invariant ratio and finite-size scaling for the stochastic susceptible-infected-recovered model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución