dc.creatorSILVA, Giovana Oliveira
dc.creatorORTEGA, Edwin M. M.
dc.creatorCANCHO, Vicente G.
dc.creatorBARRETO, Mauricio Lima
dc.date.accessioned2012-10-20T03:35:03Z
dc.date.accessioned2018-07-04T15:38:49Z
dc.date.available2012-10-20T03:35:03Z
dc.date.available2018-07-04T15:38:49Z
dc.date.created2012-10-20T03:35:03Z
dc.date.issued2008
dc.identifierCOMPUTATIONAL STATISTICS & DATA ANALYSIS, v.52, n.7, p.3820-3842, 2008
dc.identifier0167-9473
dc.identifierhttp://producao.usp.br/handle/BDPI/28974
dc.identifier10.1016/j.csda.2008.01.003
dc.identifierhttp://dx.doi.org/10.1016/j.csda.2008.01.003
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625616
dc.description.abstractIn survival analysis applications, the failure rate function may frequently present a unimodal shape. In such case, the log-normal or log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale regression model based on the Burr XII distribution is proposed for modeling data with a unimodal failure rate function as an alternative to the log-logistic regression model. Assuming censored data, we consider a classic analysis, a Bayesian analysis and a jackknife estimator for the parameters of the proposed model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the log-logistic and log-Burr XII regression models. Besides, we use sensitivity analysis to detect influential or outlying observations, and residual analysis is used to check the assumptions in the model. Finally, we analyze a real data set under log-Buff XII regression models. (C) 2008 Published by Elsevier B.V.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationComputational Statistics & Data Analysis
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.titleLog-Burr XII regression models with censored data
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución