dc.creatorLEW, Adrian J.
dc.creatorBUSCAGLIA, Gustavo C.
dc.date.accessioned2012-10-20T03:35:02Z
dc.date.accessioned2018-07-04T15:38:48Z
dc.date.available2012-10-20T03:35:02Z
dc.date.available2018-07-04T15:38:48Z
dc.date.created2012-10-20T03:35:02Z
dc.date.issued2008
dc.identifierINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, v.76, n.4, p.427-454, 2008
dc.identifier0029-5981
dc.identifierhttp://producao.usp.br/handle/BDPI/28967
dc.identifier10.1002/nme.2312
dc.identifierhttp://dx.doi.org/10.1002/nme.2312
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625609
dc.description.abstractA numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of user-defined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those elements intersected by the Dirichlet boundary to a discontinuous-Galerkin approximation and impose the Dirichlet boundary conditions strongly. By virtue of relaxing the continuity constraint at those elements. boundary locking is avoided and optimal-order convergence is achieved. This is shown through numerical experiments in reaction-diffusion problems. Copyright (c) 2008 John Wiley & Sons, Ltd.
dc.languageeng
dc.publisherJOHN WILEY & SONS LTD
dc.relationInternational Journal for Numerical Methods in Engineering
dc.rightsCopyright JOHN WILEY & SONS LTD
dc.rightsrestrictedAccess
dc.subjectimmersed boundary
dc.subjectinterfaces
dc.subjectimmersed finite element method
dc.subjectboundary locking
dc.subjectdiscontinuous-Galerkin method
dc.subjectCartesian grids
dc.subjectDirichlet conditions
dc.titleA discontinuous-Galerkin-based immersed boundary method
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución