dc.creatorCANCHO, V. G.
dc.creatorAOKI, Reiko
dc.creatorLACHOS, V. H.
dc.date.accessioned2012-10-20T03:35:01Z
dc.date.accessioned2018-07-04T15:38:47Z
dc.date.available2012-10-20T03:35:01Z
dc.date.available2018-07-04T15:38:47Z
dc.date.created2012-10-20T03:35:01Z
dc.date.issued2008
dc.identifierJOURNAL OF APPLIED STATISTICS, v.35, n.11/Dez, p.1239-1251, 2008
dc.identifier0266-4763
dc.identifierhttp://producao.usp.br/handle/BDPI/28966
dc.identifier10.1080/02664760802319667
dc.identifierhttp://dx.doi.org/10.1080/02664760802319667
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625608
dc.description.abstractSkew-normal distribution is a class of distributions that includes the normal distributions as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in a multivariate, null intercept, measurement error model [R. Aoki, H. Bolfarine, J.A. Achcar, and D. Leao Pinto Jr, Bayesian analysis of a multivariate null intercept error-in -variables regression model, J. Biopharm. Stat. 13(4) (2003b), pp. 763-771] where the unobserved value of the covariate (latent variable) follows a skew-normal distribution. The results and methods are applied to a real dental clinical trial presented in [A. Hadgu and G. Koch, Application of generalized estimating equations to a dental randomized clinical trial, J. Biopharm. Stat. 9 (1999), pp. 161-178].
dc.languageeng
dc.publisherROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
dc.relationJournal of Applied Statistics
dc.rightsCopyright ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
dc.rightsrestrictedAccess
dc.subjectSkew-normal distribution
dc.subjectGibbs algorithm
dc.subjectskewness
dc.subjectmultivariate null intercepts model
dc.subjectmeasurement error
dc.titleBayesian analysis for a skew extension of the multivariate null intercept measurement error model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución