dc.creatorRANGARAJAN, Ramsharan
dc.creatorLEW, Adrian
dc.creatorBUSCAGLIA, Gustavo C.
dc.date.accessioned2012-10-20T03:35:00Z
dc.date.accessioned2018-07-04T15:38:46Z
dc.date.available2012-10-20T03:35:00Z
dc.date.available2018-07-04T15:38:46Z
dc.date.created2012-10-20T03:35:00Z
dc.date.issued2009
dc.identifierCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, v.198, n.17-20, p.1513-1534, 2009
dc.identifier0045-7825
dc.identifierhttp://producao.usp.br/handle/BDPI/28962
dc.identifier10.1016/j.cma.2009.01.018
dc.identifierhttp://dx.doi.org/10.1016/j.cma.2009.01.018
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625604
dc.description.abstractWe propose a discontinuous-Galerkin-based immersed boundary method for elasticity problems. The resulting numerical scheme does not require boundary fitting meshes and avoids boundary locking by switching the elements intersected by the boundary to a discontinuous Galerkin approximation. Special emphasis is placed on the construction of a method that retains an optimal convergence rate in the presence of non-homogeneous essential and natural boundary conditions. The role of each one of the approximations introduced is illustrated by analyzing an analog problem in one spatial dimension. Finally, extensive two- and three-dimensional numerical experiments on linear and nonlinear elasticity problems verify that the proposed method leads to optimal convergence rates under combinations of essential and natural boundary conditions. (C) 2009 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE SA
dc.relationComputer Methods in Applied Mechanics and Engineering
dc.rightsCopyright ELSEVIER SCIENCE SA
dc.rightsclosedAccess
dc.subjectImmersed boundary methods
dc.subjectElasticity
dc.subjectNon-homogeneous boundary conditions
dc.subjectDiscontinuous Galerkin
dc.titleA discontinuous-Galerkin-based immersed boundary method with non-homogeneous boundary conditions and its application to elasticity
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución