dc.creatorCORDEIRO, Gauss M.
dc.creatorANDRADE, Marinho G.
dc.date.accessioned2012-10-20T03:34:56Z
dc.date.accessioned2018-07-04T15:38:43Z
dc.date.available2012-10-20T03:34:56Z
dc.date.available2018-07-04T15:38:43Z
dc.date.created2012-10-20T03:34:56Z
dc.date.issued2011
dc.identifierSTATISTICAL MODELLING, v.11, n.4, p.371-+, 2011
dc.identifier1471-082X
dc.identifierhttp://producao.usp.br/handle/BDPI/28948
dc.identifier10.1177/1471082X1001100405
dc.identifierhttp://dx.doi.org/10.1177/1471082X1001100405
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625590
dc.description.abstractFor the first time, we introduce a class of transformed symmetric models to extend the Box and Cox models to more general symmetric models. The new class of models includes all symmetric continuous distributions with a possible non-linear structure for the mean and enables the fitting of a wide range of models to several data types. The proposed methods offer more flexible alternatives to Box-Cox or other existing procedures. We derive a very simple iterative process for fitting these models by maximum likelihood, whereas a direct unconditional maximization would be more difficult. We give simple formulae to estimate the parameter that indexes the transformation of the response variable and the moments of the original dependent variable which generalize previous published results. We discuss inference on the model parameters. The usefulness of the new class of models is illustrated in one application to a real dataset.
dc.languageeng
dc.publisherSAGE PUBLICATIONS LTD
dc.relationStatistical Modelling
dc.rightsCopyright SAGE PUBLICATIONS LTD
dc.rightsrestrictedAccess
dc.subjectBox-Cox model
dc.subjectdispersion parameter
dc.subjectgeneralized linear model
dc.subjectmaximum likelihood
dc.subjectsymmetric distribution
dc.subjecttransformation parameter
dc.titleTransformed symmetric models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución