dc.creatorHASHIMOTO, Elizabeth M.
dc.creatorORTEGA, Edwin M. M.
dc.creatorCANCHO, Vicente G.
dc.creatorCORDEIRO, Gauss M.
dc.date.accessioned2012-10-20T03:34:48Z
dc.date.accessioned2018-07-04T15:38:37Z
dc.date.available2012-10-20T03:34:48Z
dc.date.available2018-07-04T15:38:37Z
dc.date.created2012-10-20T03:34:48Z
dc.date.issued2010
dc.identifierCOMPUTATIONAL STATISTICS & DATA ANALYSIS, v.54, n.4, p.1017-1035, 2010
dc.identifier0167-9473
dc.identifierhttp://producao.usp.br/handle/BDPI/28922
dc.identifier10.1016/j.csda.2009.10.014
dc.identifierhttp://dx.doi.org/10.1016/j.csda.2009.10.014
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625564
dc.description.abstractIn interval-censored survival data, the event of interest is not observed exactly but is only known to occur within some time interval. Such data appear very frequently. In this paper, we are concerned only with parametric forms, and so a location-scale regression model based on the exponentiated Weibull distribution is proposed for modeling interval-censored data. We show that the proposed log-exponentiated Weibull regression model for interval-censored data represents a parametric family of models that include other regression models that are broadly used in lifetime data analysis. Assuming the use of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a parametric bootstrap and a Bayesian analysis for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Furthermore, for different parameter settings, sample sizes and censoring percentages, various simulations are performed; in addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to a modified deviance residual in log-exponentiated Weibull regression models for interval-censored data. (C) 2009 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationComputational Statistics & Data Analysis
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.titleThe log-exponentiated Weibull regression model for interval-censored data
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución