dc.creatorRODRIGUES, Hildebrando M.
dc.creatorSOLA-MORALES, J.
dc.date.accessioned2012-10-20T03:34:45Z
dc.date.accessioned2018-07-04T15:38:35Z
dc.date.available2012-10-20T03:34:45Z
dc.date.available2018-07-04T15:38:35Z
dc.date.created2012-10-20T03:34:45Z
dc.date.issued2010
dc.identifierJOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, v.22, n.3, p.473-489, 2010
dc.identifier1040-7294
dc.identifierhttp://producao.usp.br/handle/BDPI/28913
dc.identifier10.1007/s10884-010-9160-7
dc.identifierhttp://dx.doi.org/10.1007/s10884-010-9160-7
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625555
dc.description.abstractThe Hartman-Grobman Theorem of linearization is extended to families of dynamical systems in a Banach space X, depending continuously on parameters. We prove that the conjugacy also changes continuously. The cases of nonlinear maps and flows are considered, and both in global and local versions, but global in the parameters. To use a special version of the Banach-Caccioppoli Theorem we introduce equivalent norms on X depending on the parameters. The functional setting is suitable for applications to some nonlinear evolution partial differential equations like the nonlinear beam equation.
dc.languageeng
dc.publisherSPRINGER
dc.relationJournal of Dynamics and Differential Equations
dc.rightsCopyright SPRINGER
dc.rightsrestrictedAccess
dc.subjectThe Hartman-Grobman theorem
dc.subjectLinearization in infinite dimensions
dc.subjectDynamical systems
dc.subjectHyperbolicity
dc.subjectUniform dichotomy
dc.titleOn the Hartman-Grobman Theorem with Parameters
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución