dc.creatorCANCHO, Vicente G.
dc.creatorLACHOS, Victor H.
dc.creatorORTEGA, Edwin M. M.
dc.date.accessioned2012-10-20T03:34:44Z
dc.date.accessioned2018-07-04T15:38:34Z
dc.date.available2012-10-20T03:34:44Z
dc.date.available2018-07-04T15:38:34Z
dc.date.created2012-10-20T03:34:44Z
dc.date.issued2010
dc.identifierSTATISTICAL PAPERS, v.51, n.3, p.547-558, 2010
dc.identifier0932-5026
dc.identifierhttp://producao.usp.br/handle/BDPI/28910
dc.identifier10.1007/s00362-008-0139-y
dc.identifierhttp://dx.doi.org/10.1007/s00362-008-0139-y
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625552
dc.description.abstractIn this paper we have discussed inference aspects of the skew-normal nonlinear regression models following both, a classical and Bayesian approach, extending the usual normal nonlinear regression models. The univariate skew-normal distribution that will be used in this work was introduced by Sahu et al. (Can J Stat 29:129-150, 2003), which is attractive because estimation of the skewness parameter does not present the same degree of difficulty as in the case with Azzalini (Scand J Stat 12:171-178, 1985) one and, moreover, it allows easy implementation of the EM-algorithm. As illustration of the proposed methodology, we consider a data set previously analyzed in the literature under normality.
dc.languageeng
dc.publisherSPRINGER
dc.relationStatistical Papers
dc.rightsCopyright SPRINGER
dc.rightsrestrictedAccess
dc.subjectSkew-normal distribution
dc.subjectEM-algorithm
dc.subjectNonlinear regression models
dc.subjectMCMC
dc.titleA nonlinear regression model with skew-normal errors
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución