Artículos de revistas
Bayesian analysis of skew-t multivariate null intercept measurement error model
Fecha
2010Registro en:
STATISTICAL PAPERS, v.51, n.3, p.531-545, 2010
0932-5026
10.1007/s00362-008-0138-z
Autor
LACHOS, Victor H.
CANCHO, Vicente G.
AOKI, Reiko
Institución
Resumen
The multivariate skew-t distribution (J Multivar Anal 79:93-113, 2001; J R Stat Soc, Ser B 65:367-389, 2003; Statistics 37:359-363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew-normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763-771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry.