dc.creatorRODRIGUES, Hildebrando M.
dc.creatorWU, Jianhong
dc.creatorGABRIEL, Luis R. A.
dc.date.accessioned2012-10-20T03:34:37Z
dc.date.accessioned2018-07-04T15:38:30Z
dc.date.available2012-10-20T03:34:37Z
dc.date.available2018-07-04T15:38:30Z
dc.date.created2012-10-20T03:34:37Z
dc.date.issued2011
dc.identifierINTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, v.21, n.2, p.513-526, 2011
dc.identifier0218-1274
dc.identifierhttp://producao.usp.br/handle/BDPI/28894
dc.identifier10.1142/S0218127411028568
dc.identifierhttp://dx.doi.org/10.1142/S0218127411028568
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625536
dc.description.abstractIn this series of papers, we study issues related to the synchronization of two coupled chaotic discrete systems arising from secured communication. The first part deals with uniform dissipativeness with respect to parameter variation via the Liapunov direct method. We obtain uniform estimates of the global attractor for a general discrete nonautonomous system, that yields a uniform invariance principle in the autonomous case. The Liapunov function is allowed to have positive derivative along solutions of the system inside a bounded set, and this reduces substantially the difficulty of constructing a Liapunov function for a given system. In particular, we develop an approach that incorporates the classical Lagrange multiplier into the Liapunov function method to naturally extend those Liapunov functions from continuous dynamical system to their discretizations, so that the corresponding uniform dispativeness results are valid when the step size of the discretization is small. Applications to the discretized Lorenz system and the discretization of a time-periodic chaotic system are given to illustrate the general results. We also show how to obtain uniform estimation of attractors for parametrized linear stable systems with nonlinear perturbation.
dc.languageeng
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTD
dc.relationInternational Journal of Bifurcation and Chaos
dc.rightsCopyright WORLD SCIENTIFIC PUBL CO PTE LTD
dc.rightsrestrictedAccess
dc.subjectDiscrete system
dc.subjectuniform dissipativeness
dc.subjectattractor
dc.subjectsynchronization
dc.subjectconstructing a Liapunov function
dc.titleUNIFORM DISSIPATIVENESS, ROBUST SYNCHRONIZATION AND LOCATION OF THE ATTRACTOR OF PARAMETRIZED NONAUTONOMOUS DISCRETE SYSTEMS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución