dc.creatorAFONSO, S. M.
dc.creatorBONOTTO, E. M.
dc.creatorFEDERSON, M.
dc.creatorSCHWABIK, S.
dc.date.accessioned2012-10-20T03:34:35Z
dc.date.accessioned2018-07-04T15:38:28Z
dc.date.available2012-10-20T03:34:35Z
dc.date.available2018-07-04T15:38:28Z
dc.date.created2012-10-20T03:34:35Z
dc.date.issued2011
dc.identifierJOURNAL OF DIFFERENTIAL EQUATIONS, v.250, n.7, p.2969-3001, 2011
dc.identifier0022-0396
dc.identifierhttp://producao.usp.br/handle/BDPI/28890
dc.identifier10.1016/j.jde.2011.01.019
dc.identifierhttp://dx.doi.org/10.1016/j.jde.2011.01.019
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625532
dc.description.abstractIn this paper, we consider an initial value problem for a class of generalized ODEs, also known as Kurzweil equations, and we prove the existence of a local semidynamical system there. Under certain perturbation conditions, we also show that this class of generalized ODEs admits a discontinuous semiflow which we shall refer to as an impulsive semidynamical system. As a consequence, we obtain LaSalle`s invariance principle for such a class of generalized ODEs. Due to the importance of LaSalle`s invariance principle in studying stability of differential systems, we include an application to autonomous ordinary differential systems with impulse action at variable times. (C) 2011 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relationJournal of Differential Equations
dc.rightsCopyright ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsrestrictedAccess
dc.subjectGeneralized ordinary differential equations
dc.subjectImpulse
dc.subjectLaSalle`s invariance principle
dc.subjectImpulsive semidynamical systems
dc.titleDiscontinuous local semiflows for Kurzweil equations leading to LaSalle`s invariance principle for differential systems with impulses at variable times
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución